"Некоторое время назад коллега обратился ко мне за помощью. Он собирался поставить самую низкую оценку по физике одному из своих студентов, в то время как этот студент утверждал, что заслуживает высшего балла. Оба, преподаватель и студент согласились положиться на суждение третьего лица, незаинтересованного арбитра; выбор пал на меня. Экзаменационный вопрос гласил: «Объясните, каким образом можноизмерить высоту здания с помощью барометра». Ответ студента был таким:
«Нужно подняться с барометром на крышу здания, спустить барометр вниз на длинной веревке, а затем втянуть его обратно и измерить длину веревки, которая и покажет точную высоту здания».
Случай был и впрямь сложный, так как ответ был абсолютно полным и верным! С другой стороны, экзамен был по физике, а ответ имел мало общего с применением знаний в этой области.
Я предложил студенту попытаться ответить еще раз. Дав ему шесть минут на подготовку, я предупредил его, что ответ должен демонстрировать знание физических законов. По истечении пяти минут он так и не написал ничего в экзаменационном листе. Я спросил его, сдается ли он, но он заявил, что у него есть несколько решений проблемы, и он просто выбирает лучшее. Заинтересовавшись, я попросил молодого человека приступить к ответу, не дожидаясь истечения отведенного срока. Новый ответ на вопрос гласил: «Поднимитесь с барометром на крышу и бросьте его вниз, замеряя время падения. Затем, используя формулу L = (a*t^2)/2, вычислите высоту здания».
Тут я спросил моего коллегу, преподавателя, доволен ли он этим ответом. Тот, наконец, сдался, признав ответ удовлетворительным.
Однако студент упоминал, что знает несколько ответов, и я попросил его открыть их нам.
«Есть несколько способов измерить высоту здания с помощью барометра», начал студент. «Например, можно выйти на улицу в солнечный день и измерить высоту барометра и его тени, а также измерить длину тени здания. Затем, решив несложную пропорцию, определить высоту самого здания.»
«Неплохо», сказал я. «Есть и другие способы?»
«Да. Есть очень простой способ, который, уверен, вам понравится. Вы берете барометр в руки и поднимаетесь по лестнице, прикладывая барометр к стене и делая отметки. Сосчитав количество этих отметок и умножив его на размер барометра, вы получите высоту здания. Вполне очевидный метод.»
«Если вы хотите более сложный способ», продолжал он, «то привяжите к барометру шнурок и, раскачивая его, как маятник, определите величину гравитации у основания здания и на его крыше. Из разницы между этими величинами, в принципе, можно вычислить высоту здания. В этом же случае, привязав к барометру шнурок, вы можете подняться в вашим маятником на крышу и, раскачивая его, вычислить высоту здания по периоду прецессии.»
«Наконец», заключил он, "среди множества прочих способов решения проблемы лучшим, пожалуй, является такой: возьмите барометр с собой, найдите управляющего зданием и скажите ему: «Господин управляющий, у меня есть замечательный барометр. Он ваш, если вы скажете мне высоту этого здания».
Тут я спросил студента — неужели он действительно не знал общепринятого решения этой задачи. Он признался, что знал, но сказал при этом, что сыт по горло школой и колледжем, где учителя навязывают ученикам свой способ мышления.
Студентом этим был Нильс Бор (1885–1962), датский физик, лауреат Нобелевской премии 1922 г."
Комментариев: 35