Очевидное - невероятное!

1025293

Площадь треугольника равна сумме площадей составляющих его фигур.
Треугольник разрезан на части и собран вновь.
Части те же самые, только размещены они по другому.
Откуда взялась эта "дырка"?

АнекдотПодходят к мужчине двое ментов: — Пройдёмте, будете свидетелем. — Все–так...
АнекдотПочему-то уверен, что в будущем, когда всё человечество для передвижения пере...

Комментариев: 48

Умница!!!!!

При построении треугольники и желтая фигура не соединяются в одной точке. Высота короткого катета красного треугольника чуть выше трех клеток. Поэтому детали фигуры или налаживаются одна на одну или выходят за рамки первоначальной площади. Из-за этого и появляется пустая клетка. Как-то так.;)

1. Попытаемся соблюсти начальное условие и режем верхний треугольник по заданной схеме.
2. Обе гипотенузы новообразованных треугольников все равно остаются коллинеарны.
3. Новообразованные треугольники подобны, т.е. самый острый угол одного = самому острому углу другого, а острый угол другого = острому углу первого. Ну и 90 градусов = 90 градусам.
4. От перестановки местами новообразованных треугольников гипотенузы должны бы остаться коллинеарными, но в итоге мы наблюдаем горб.
5. Значит коллинеарность не соблюдается.
6. Значит треугольники не подобны и равенство всех углов не соблюдается.
7. Значит и на верхнем "треугольнике" на гипотенузе тоже должен быть изгиб в районе стыка малых 3-угольников.
Вывод: потому что условия задачи не соответствуют рисунку. Это не 3-угольник, а 4-угольник

и да, дырка из-за "горба". в верхнем случае у нас "впадина"

ЗЫ: пробовал резать 3-угольник в автокаде - такие глупостей не получается.

ГОсподи, ну сколько можно копипастить эту хню*?

  • 27  Shnec
  • , в

отак і з бюджетом

ГОсподи, ну сколько можно копипастить эту хню*?
Ещё есть тоже на на плитке шоколада.

Площа фігури складається із суми площ фігур, з яких вона складається. У першому випадку якщо порахувати сумарну площу чотирьох фігур, з яких складається трикутник, отримаємо 800 мм2, а площа самого прямокутного трикутника дорівнює 812,5 мм2. Дана різниця (12,5 мм2) площ і дає площу вільного квадратика


Маладца)